From 2965e9e7e7ae976ecf31e4bbdcc1a7cce10266d7 Mon Sep 17 00:00:00 2001 From: Zach Dziura Date: Tue, 10 May 2016 15:07:49 -0400 Subject: [PATCH] Clean up project code and add better documentation --- Cargo.toml | 3 + examples/multiply.rs | 9 +- src/lib.rs | 69 ++++++------ src/prime.rs | 262 ++++++++++++++++++++++++++----------------- 4 files changed, 199 insertions(+), 144 deletions(-) diff --git a/Cargo.toml b/Cargo.toml index d98615f..e5dbbe4 100644 --- a/Cargo.toml +++ b/Cargo.toml @@ -6,8 +6,10 @@ description = "A cryptographically secure prime number generator" repository = "https://github.com/zcdziura/pumpkin" keywords = ["prime", "number", "cryptography", "generator"] license = "Unlicense/MIT" +readme = "README.md" [dependencies] +clippy = {version = "0.0.*", optional = true} custom_derive = "0.1.*" newtype_derive = "0.1.*" ramp = "0.2.*" @@ -19,4 +21,5 @@ path = "src/lib.rs" doctest = false [features] +dev = ["clippy"] unstable = [] diff --git a/examples/multiply.rs b/examples/multiply.rs index 96c0bac..74623d6 100644 --- a/examples/multiply.rs +++ b/examples/multiply.rs @@ -4,9 +4,10 @@ use pumpkin::Prime; fn main() { let p = Prime::new(2048); - let q = Prime::new(2048); + println!("{:x}", p); - println!("{}", p); - println!("{}", q); - println!("\n{}", p * q); + let q = Prime::new(2048); + println!("\n{:x}", q); + + println!("\n{:X}", p * q); } diff --git a/src/lib.rs b/src/lib.rs index 4f0a703..15dfbdf 100644 --- a/src/lib.rs +++ b/src/lib.rs @@ -1,35 +1,38 @@ #![feature(test)] +#![deny(missing_docs, missing_debug_implementations, + missing_copy_implementations, trivial_casts, trivial_numeric_casts, + unsafe_code, unused_import_braces, unused_qualifications)] +#![cfg_attr(feature = "dev", feature(plugin))] +#![cfg_attr(feature = "dev", plugin(clippy))] -/// # The Pumpkin Prime Number Generator -/// -/// The `pumpkin` prime number generator library can be used to generate -/// prime numbers of any reasonable length, suitable for any cryptographic -/// purpose. All numbers generated are seeded from the operating system's -/// secure source of entrophy and are verified using three different primality -/// tests. -/// -/// Primes have to be AT LEAST 512-bits long. Any lower bit-length will -/// immediately fail. -/// -/// ## Examples -/// -/// ``` -/// extern crate pumpkin; -/// -/// use pumpkin::Prime; -/// -/// fn main() { -/// // Generate a 2048-bit prime number -/// let p = Prime::new(2048); -/// let q = Prime::new(2048); -/// -/// let r = p * q; -/// println!("{}", r); // Some ridiculously large number -/// } -/// ``` +//! A crate for generating large, cryptographically secure prime numbers. +//! `Primes` are seeded from the operating system's main source of entropy, +//! ensuring proper randomness. +//! +//! `Primes` must be AT LEAST 512-bits long. Attempting to generate a `Prime` +//! less than 512-bits long will cause a panic. +//! +//! ## Example +//! +//! ``` +//! extern crate pumpkin; +//! +//! use pumpkin::Prime; +//! +//! fn main() { +//! // Generate 2048-bit primes +//! let p = Prime::new(2048); +//! let q = Prime::new(2048); +//! +//! let n = p * q; +//! println!("{}", n); // Some 4096-bit composite number +//! } +//! ``` -#[macro_use] extern crate custom_derive; -#[macro_use] extern crate newtype_derive; +#[macro_use] +extern crate custom_derive; +#[macro_use] +extern crate newtype_derive; extern crate ramp; extern crate rand; extern crate test; @@ -52,28 +55,22 @@ mod tests { #[test] #[should_panic] fn test_new_small_prime_from_rng() { - let mut rngesus = match OsRng::new() { - Ok(rng) => rng, - Err(reason) => panic!("An error occurred when initializing the RNG: {}", reason) - }; + let mut rngesus = OsRng::new().unwrap(); Prime::from_rng(511, &mut rngesus); } #[bench] - #[ignore] fn bench_generate_512_bit_prime(b: &mut Bencher) { b.iter(|| Prime::new(512)); } #[bench] - #[ignore] fn bench_generate_1024_bit_prime(b: &mut Bencher) { b.iter(|| Prime::new(1024)); } #[bench] - #[ignore] fn bench_generate_2048_bit_prime(b: &mut Bencher) { b.iter(|| Prime::new(2048)); } diff --git a/src/prime.rs b/src/prime.rs index a3b4012..1be1d96 100644 --- a/src/prime.rs +++ b/src/prime.rs @@ -2,69 +2,103 @@ use ramp::{Int, RandomInt}; use rand::{OsRng, thread_rng}; -use std::fmt; - -static SMALL_PRIMES: [u32; 999] = [3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, -67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, -173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, -281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, -409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, -541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, -659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, -809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, -941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, -1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, -1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, -1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, -1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, -1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, -1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, -1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, -1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, -2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, -2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, -2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, -2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, -2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, -2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, -2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, -2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, -3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, -3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, -3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, -3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, -3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, -3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, -3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, -3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, -4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, -4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, -4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, -4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, -4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, -4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, -4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, -5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, -5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, -5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, -5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, -5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, -5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, -5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, -6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, -6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, -6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, -6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, -6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, -6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, -6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, -6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, -7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, -7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, -7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, -7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, -7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, -7873, 7877, 7879, 7883, 7901, 7907, 7919]; +static SMALL_PRIMES: [u32; 999] = [3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, + 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, + 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, + 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, + 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, + 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, + 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, + 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, + 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, + 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, + 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, + 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, + 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, + 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, + 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, + 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, + 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, + 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, + 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, + 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, + 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, + 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, + 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, + 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, + 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, + 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, + 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, + 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, + 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, + 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, + 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, + 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, + 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, + 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, + 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, + 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, + 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, + 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, + 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, + 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, + 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, + 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, + 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, + 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, + 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, + 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, + 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, + 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, + 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, + 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, + 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, + 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, + 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, + 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, + 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, + 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, + 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, + 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, + 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, + 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, + 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, + 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, + 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, + 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, + 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, + 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, + 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, + 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, + 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, + 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, + 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, + 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, + 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, + 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, + 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, + 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, + 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, + 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, + 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, + 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, + 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, + 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, + 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, + 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, + 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, + 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, + 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, + 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, + 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, + 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, + 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, + 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, + 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, + 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, + 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, + 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, + 7877, 7879, 7883, 7901, 7907, 7919]; /// An arbitrarily-length prime number, suitable for cryptographic purposes. /// @@ -95,12 +129,15 @@ static SMALL_PRIMES: [u32; 999] = [3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, /// as well. `Prime`s simply claim that the number you're dealing with is a /// prime number. custom_derive! { - #[derive(Debug, - NewtypeAdd, NewtypeAdd(Int), - NewtypeSub, NewtypeSub(Int), - NewtypeMul, NewtypeMul(Int), - NewtypeDiv, NewtypeDiv(Int))] - pub struct Prime(Int); + /// A cryptographically secure prime number. + #[derive(NewtypeDebug, NewtypeDisplay, NewtypeBinary, NewtypeOctal, + NewtypeLowerHex, NewtypeUpperHex, NewtypeAdd, NewtypeAdd(Int), + NewtypeSub, NewtypeSub(Int), NewtypeMul, NewtypeMul(Int), NewtypeDiv, + NewtypeDiv(Int), NewtypeRem, NewtypeRem(Int), NewtypeBitAnd, + NewtypeBitAnd(Int), NewtypeBitOr, NewtypeBitOr(Int), NewtypeBitXor, + NewtypeBitXor(Int) + )] + pub struct Prime(Int); } impl Prime { @@ -114,9 +151,9 @@ impl Prime { debug_assert!(bit_length >= 512); let mut rngesus = match OsRng::new() { Ok(rng) => rng, - Err(reason) => panic!("Error initializing RNG: {}", reason) + Err(reason) => panic!("Error initializing RNG: {}", reason), }; - + Prime::from_rng(bit_length, &mut rngesus) } @@ -126,7 +163,7 @@ impl Prime { pub fn from_rng(bit_length: usize, rngesus: &mut OsRng) -> Prime { debug_assert!(bit_length >= 512); let mut candidate: Int; - + // In order to remove as much bias from the system as possible, test // 500 potential candidates at a time before re-seeding the candidate // with a new random number. @@ -166,11 +203,33 @@ impl Prime { } } -impl fmt::Display for Prime { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - let &Prime(ref num) = self; - write!(f, "{}", num) +fn mod_exp(base: &Int, exponent: &Int, modulus: &Int) -> Int { + let mut result = Int::one(); + let mut base = base.clone(); + let mut exponent = exponent.clone(); + + while exponent > 0_usize { + if &exponent & 1_usize == 1_usize { + result = (&base * result) % modulus; + } + + base = (&base.pow(2)) % modulus; + exponent = &exponent >> 1; } + + result +} + +fn rewrite(candidate: &Int) -> (Int, Int) { + let mut d = candidate - 1_usize; + let mut s = Int::zero(); + + while &d & 1 == 1_usize { + d = &d >> 1_usize; + s = &s + 1_usize; + } + + (s, d) } fn is_prime(candidate: &Int) -> bool { @@ -209,11 +268,7 @@ fn fermat(candidate: &Int) -> bool { let result = mod_exp(&random, &(candidate - 1_usize), candidate); - if result == 1_usize { - true - } else { - false - } + result == 1_usize } fn miller_rabin(candidate: &Int) -> bool { @@ -227,7 +282,7 @@ fn miller_rabin(candidate: &Int) -> bool { if x == 1_usize || x == (candidate - 1_usize) { continue; } else { - for _ in Int::one() .. s - 1_usize { + for _ in Int::one()..s - 1_usize { x = mod_exp(&x, &Int::from(2), candidate); if x == 1_usize { return false; @@ -242,31 +297,30 @@ fn miller_rabin(candidate: &Int) -> bool { true } -fn mod_exp(base: &Int, exponent: &Int, modulus: &Int) -> Int { - let mut result = Int::one(); - let mut base = base.clone(); - let mut exponent = exponent.clone(); +#[cfg(test)] +mod tests { + use ramp::Int; + use super::{fermat, miller_rabin}; - while exponent > 0_usize { - if &exponent & 1_usize == 1_usize { - result = (&base * result) % modulus; - } - - base = (&base.pow(2)) % modulus; - exponent = &exponent >> 1; + #[test] + fn test_fermat_pass() { + assert!(fermat(&Int::from(7919))); } - result -} - -fn rewrite(candidate: &Int) -> (Int, Int) { - let mut d = candidate - 1_usize; - let mut s = Int::zero(); - - while &d & 1 == 1_usize { - d = &d >> 1_usize; - s = &s + 1_usize; + #[test] + #[should_panic] + fn test_fermat_fail() { + assert!(fermat(&Int::from(7920))); } - (s, d) + #[test] + fn test_miller_rabin_pass() { + assert!(miller_rabin(&Int::from(7919))); + } + + #[test] + #[should_panic] + fn test_miller_rabin_fail() { + assert!(miller_rabin(&Int::from(7920))); + } }