Completed first pass of the primegen algorithm

This commit is contained in:
Zach Dziura 2015-10-04 21:32:25 -04:00
parent 0201205532
commit 80049c332e
6 changed files with 234 additions and 120 deletions

1
.gitignore vendored
View file

@ -9,3 +9,4 @@
# Generated by Cargo # Generated by Cargo
/target/ /target/
Cargo.lock

22
Cargo.lock generated
View file

@ -2,7 +2,7 @@
name = "pumpkin" name = "pumpkin"
version = "0.1.0" version = "0.1.0"
dependencies = [ dependencies = [
"num 0.1.27 (registry+https://github.com/rust-lang/crates.io-index)", "ramp 0.1.8 (registry+https://github.com/rust-lang/crates.io-index)",
"rand 0.3.11 (registry+https://github.com/rust-lang/crates.io-index)", "rand 0.3.11 (registry+https://github.com/rust-lang/crates.io-index)",
] ]
@ -15,18 +15,27 @@ dependencies = [
"winapi-build 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)", "winapi-build 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)",
] ]
[[package]]
name = "gcc"
version = "0.3.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
dependencies = [
"advapi32-sys 0.1.2 (registry+https://github.com/rust-lang/crates.io-index)",
"winapi 0.2.4 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]] [[package]]
name = "libc" name = "libc"
version = "0.1.10" version = "0.1.10"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]] [[package]]
name = "num" name = "ramp"
version = "0.1.27" version = "0.1.8"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
dependencies = [ dependencies = [
"gcc 0.3.17 (registry+https://github.com/rust-lang/crates.io-index)",
"rand 0.3.11 (registry+https://github.com/rust-lang/crates.io-index)", "rand 0.3.11 (registry+https://github.com/rust-lang/crates.io-index)",
"rustc-serialize 0.3.16 (registry+https://github.com/rust-lang/crates.io-index)",
] ]
[[package]] [[package]]
@ -39,11 +48,6 @@ dependencies = [
"winapi 0.2.4 (registry+https://github.com/rust-lang/crates.io-index)", "winapi 0.2.4 (registry+https://github.com/rust-lang/crates.io-index)",
] ]
[[package]]
name = "rustc-serialize"
version = "0.3.16"
source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]] [[package]]
name = "winapi" name = "winapi"
version = "0.2.4" version = "0.2.4"

View file

@ -4,5 +4,5 @@ version = "0.1.0"
authors = ["Zach Dziura <zcdziura@gmail.com>"] authors = ["Zach Dziura <zcdziura@gmail.com>"]
[dependencies] [dependencies]
num = "0.1.27" ramp = "0.1.8"
rand = "0.3.11" rand = "0.3.11"

View file

@ -1,4 +1,8 @@
extern crate num; #![feature(augmented_assignments)]
#![feature(core)]
extern crate core;
extern crate ramp;
extern crate rand; extern crate rand;
pub mod primes; pub mod prime;

213
src/prime.rs Normal file
View file

@ -0,0 +1,213 @@
use core::ops::{Add, BitAnd, Mul, Rem, Shr, Sub};
use ramp::{Int, RandomInt};
use rand::{OsRng, thread_rng};
use std::fmt;
static SMALL_PRIMES: [u32; 999] = [3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,
173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277,
281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401,
409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523,
541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653,
659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937,
941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051,
1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171,
1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289,
1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427,
1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523,
1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621,
1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753,
1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879,
1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011,
2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131,
2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269,
2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381,
2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521,
2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659,
2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749,
2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879,
2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019,
3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169,
3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307,
3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433,
3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547,
3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673,
3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803,
3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929,
3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073,
4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217,
4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339,
4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483,
4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637,
4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759,
4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919,
4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021,
5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171,
5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323,
5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449,
5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581,
5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717,
5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851,
5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011,
6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143,
6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277,
6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389,
6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569,
6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703,
6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841,
6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977,
6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127,
7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283,
7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459,
7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573,
7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699,
7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867,
7873, 7877, 7879, 7883, 7901, 7907, 7919];
#[derive(Debug)]
pub struct Prime {
bit_length: usize,
num: Int
}
impl Prime {
pub fn new(bit_length: usize) -> Prime {
let one = Int::one();
let two = &one + &one;
let mut rngesus = match OsRng::new() {
Ok(rng) => rng,
Err(reason) => panic!("Error initializing RNG: {}", reason)
};
let mut candidate = rngesus.gen_uint(bit_length);
// Make sure candidate is odd before continuing...
if &candidate & (&one) == 0 {
candidate += &one;
}
while !is_prime(&candidate) {
candidate += &two;
}
Prime {
bit_length: bit_length,
num: candidate
}
}
}
impl fmt::Display for Prime {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.num)
}
}
pub fn is_prime(candidate: &Int) -> bool {
// First, iterate through the array of small primes and divide the
// candidate. If the candidate divides any of them, then we know the number
// is a multiple of that prime; that is, the candidate is composite.
let zero = Int::zero();
for p in SMALL_PRIMES.into_iter() {
let prime: Int = Int::from(*p);
let (_, r) = candidate.divmod(&prime);
if r != zero {
continue;
} else {
return false;
}
}
// Second, do a Fermat test on the candidate
if !fermat(candidate) {
return false;
}
// Finally, do a Miller-Rabin test
if !miller_rabin(candidate) {
return false;
}
true
}
pub fn fermat(candidate: &Int) -> bool {
// Perform Fermat's little theorem on the candidate to determine probable
// primality.
let one = Int::one();
let random = thread_rng().gen_int_range(&one, candidate);
let result = mod_exp(&random, &candidate.sub(&one), candidate);
if result == one {
true
} else {
false
}
}
pub fn miller_rabin(candidate: &Int) -> bool {
// Perform five iterations of the Miller-Rabin test on the candidate.
let (s, d) = rewrite(candidate);
let one = Int::one();
let two = (&one).add(&one);
for _ in (0..5) {
let basis = thread_rng().gen_int_range(&two, candidate);
let mut x = mod_exp(&basis, &d, candidate);
if x.eq(&one) || x.eq(&(candidate.sub(&one))) {
continue;
} else {
for _ in (one.clone() .. s.sub(&one)) {
x = mod_exp(&x, &two, candidate);
if x == one.clone() {
return false;
} else if x == (candidate.sub(&one)) {
break;
}
}
return false;
}
}
true
}
fn mod_exp(base: &Int, exponent: &Int, modulus: &Int) -> Int {
let (zero, one) = (Int::zero(), Int::one());
let mut result = one.clone();
let mut base = base.clone();
let mut exponent = exponent.clone();
while &exponent > &zero {
if (&exponent).bitand(&one) == (one.clone()) {
result = ((&result).mul(&base)).rem(modulus);
}
base = ((&base).mul(&base)).rem(modulus);
exponent = exponent.clone().shr(1);
}
result
}
fn rewrite(candidate: &Int) -> (Int, Int) {
let one = Int::one();
let mut d = candidate.sub(&one);
let mut s = Int::zero();
while (&d).bitand(&one) == one {
d = d.clone().shr(1);
s = (&s).add(&one);
}
(s, d)
}

View file

@ -1,108 +0,0 @@
use num::{BigUint, FromPrimitive, One, Zero, pow};
use num::bigint::RandBigInt;
use num::integer::Integer;
use rand::{OsRng, thread_rng};
pub fn generate_prime() -> BigUint {
/* Generates a large prime number within the range [2^2048, 2^2049);
* that is, generates a large prime number between 2^2048 inclusive and
* 2^2049 exclusive.
*/
// Generate the RNG, which will be sourced from the OS's secure source
// of entropy. Also, give it a sweet name.
let one: BigUint = One::one();
let two = one.clone() + one.clone();
let mut rngesus = match OsRng::new() {
Ok(o) => o,
Err(err) => panic!("Error initializing RNG: {}", err)
};
let lower_bound = pow(BigUint::from_u8(2).unwrap(), 2048);
let upper_bound = pow(BigUint::from_u8(2).unwrap(), 2049);
let mut candidate = rngesus.gen_biguint_range(&lower_bound,
&upper_bound);
if candidate.is_even() {
candidate = candidate + one.clone();
}
while !test_prime(&candidate, 128) {
candidate = candidate + two.clone();
}
candidate
}
fn test_prime(candidate: &BigUint, limit: u8) -> bool {
let (zero, one): (BigUint, BigUint) = (Zero::zero(), One::one());
let two = one.clone() + one.clone();
if *candidate < two {
false
} else if *candidate == two {
true
} else if candidate.is_even() {
false
} else {
let (s, d) = rewrite(&(candidate - one.clone()));
let mut k = 0;
while k < limit {
let basis = thread_rng().gen_biguint_range(&two, candidate);
let mut v = modulo(&basis, &d, candidate);
if v != one.clone() && v != (candidate - one.clone()) {
let mut i = zero.clone();
loop {
v = modulo(&v, &two, candidate);
if v == (candidate - one.clone()) {
break
} else if v == one.clone() || i == (s.clone() - one.clone()) {
return false;
}
i = i + one.clone();
}
}
k = k + 2;
}
true
}
}
fn rewrite(n: &BigUint) -> (BigUint, BigUint) {
let mut d = n.clone();
let mut s: BigUint = Zero::zero();
let one: BigUint = One::one();
let two = one.clone() + one.clone();
while d.is_even() {
d = d.clone() / two.clone();
s = s.clone() + one.clone();
}
(s, d)
}
fn modulo(base: &BigUint, exponent: &BigUint, modulus: &BigUint) -> BigUint {
// Modular exponentiation function, with BigUints!
// Warning!! Ahead, thar be clones!
let (zero, one): (BigUint, BigUint) = (Zero::zero(), One::one());
let mut result = one.clone();
let mut b = base.clone();
let mut e = exponent.clone();
while e > zero {
if (exponent & one.clone()) == one {
result = (result * b.clone()) % modulus;
}
b = (b.clone() * b.clone()) % modulus;
e = e >> 1;
}
result
}