Clean up project code and add better documentation
This commit is contained in:
parent
53329646ab
commit
2965e9e7e7
4 changed files with 199 additions and 144 deletions
|
@ -6,8 +6,10 @@ description = "A cryptographically secure prime number generator"
|
||||||
repository = "https://github.com/zcdziura/pumpkin"
|
repository = "https://github.com/zcdziura/pumpkin"
|
||||||
keywords = ["prime", "number", "cryptography", "generator"]
|
keywords = ["prime", "number", "cryptography", "generator"]
|
||||||
license = "Unlicense/MIT"
|
license = "Unlicense/MIT"
|
||||||
|
readme = "README.md"
|
||||||
|
|
||||||
[dependencies]
|
[dependencies]
|
||||||
|
clippy = {version = "0.0.*", optional = true}
|
||||||
custom_derive = "0.1.*"
|
custom_derive = "0.1.*"
|
||||||
newtype_derive = "0.1.*"
|
newtype_derive = "0.1.*"
|
||||||
ramp = "0.2.*"
|
ramp = "0.2.*"
|
||||||
|
@ -19,4 +21,5 @@ path = "src/lib.rs"
|
||||||
doctest = false
|
doctest = false
|
||||||
|
|
||||||
[features]
|
[features]
|
||||||
|
dev = ["clippy"]
|
||||||
unstable = []
|
unstable = []
|
||||||
|
|
|
@ -4,9 +4,10 @@ use pumpkin::Prime;
|
||||||
|
|
||||||
fn main() {
|
fn main() {
|
||||||
let p = Prime::new(2048);
|
let p = Prime::new(2048);
|
||||||
let q = Prime::new(2048);
|
println!("{:x}", p);
|
||||||
|
|
||||||
println!("{}", p);
|
let q = Prime::new(2048);
|
||||||
println!("{}", q);
|
println!("\n{:x}", q);
|
||||||
println!("\n{}", p * q);
|
|
||||||
|
println!("\n{:X}", p * q);
|
||||||
}
|
}
|
||||||
|
|
69
src/lib.rs
69
src/lib.rs
|
@ -1,35 +1,38 @@
|
||||||
#![feature(test)]
|
#![feature(test)]
|
||||||
|
#![deny(missing_docs, missing_debug_implementations,
|
||||||
|
missing_copy_implementations, trivial_casts, trivial_numeric_casts,
|
||||||
|
unsafe_code, unused_import_braces, unused_qualifications)]
|
||||||
|
#![cfg_attr(feature = "dev", feature(plugin))]
|
||||||
|
#![cfg_attr(feature = "dev", plugin(clippy))]
|
||||||
|
|
||||||
/// # The Pumpkin Prime Number Generator
|
//! A crate for generating large, cryptographically secure prime numbers.
|
||||||
///
|
//! `Primes` are seeded from the operating system's main source of entropy,
|
||||||
/// The `pumpkin` prime number generator library can be used to generate
|
//! ensuring proper randomness.
|
||||||
/// prime numbers of any reasonable length, suitable for any cryptographic
|
//!
|
||||||
/// purpose. All numbers generated are seeded from the operating system's
|
//! `Primes` must be AT LEAST 512-bits long. Attempting to generate a `Prime`
|
||||||
/// secure source of entrophy and are verified using three different primality
|
//! less than 512-bits long will cause a panic.
|
||||||
/// tests.
|
//!
|
||||||
///
|
//! ## Example
|
||||||
/// Primes have to be AT LEAST 512-bits long. Any lower bit-length will
|
//!
|
||||||
/// immediately fail.
|
//! ```
|
||||||
///
|
//! extern crate pumpkin;
|
||||||
/// ## Examples
|
//!
|
||||||
///
|
//! use pumpkin::Prime;
|
||||||
/// ```
|
//!
|
||||||
/// extern crate pumpkin;
|
//! fn main() {
|
||||||
///
|
//! // Generate 2048-bit primes
|
||||||
/// use pumpkin::Prime;
|
//! let p = Prime::new(2048);
|
||||||
///
|
//! let q = Prime::new(2048);
|
||||||
/// fn main() {
|
//!
|
||||||
/// // Generate a 2048-bit prime number
|
//! let n = p * q;
|
||||||
/// let p = Prime::new(2048);
|
//! println!("{}", n); // Some 4096-bit composite number
|
||||||
/// let q = Prime::new(2048);
|
//! }
|
||||||
///
|
//! ```
|
||||||
/// let r = p * q;
|
|
||||||
/// println!("{}", r); // Some ridiculously large number
|
|
||||||
/// }
|
|
||||||
/// ```
|
|
||||||
|
|
||||||
#[macro_use] extern crate custom_derive;
|
#[macro_use]
|
||||||
#[macro_use] extern crate newtype_derive;
|
extern crate custom_derive;
|
||||||
|
#[macro_use]
|
||||||
|
extern crate newtype_derive;
|
||||||
extern crate ramp;
|
extern crate ramp;
|
||||||
extern crate rand;
|
extern crate rand;
|
||||||
extern crate test;
|
extern crate test;
|
||||||
|
@ -52,28 +55,22 @@ mod tests {
|
||||||
#[test]
|
#[test]
|
||||||
#[should_panic]
|
#[should_panic]
|
||||||
fn test_new_small_prime_from_rng() {
|
fn test_new_small_prime_from_rng() {
|
||||||
let mut rngesus = match OsRng::new() {
|
let mut rngesus = OsRng::new().unwrap();
|
||||||
Ok(rng) => rng,
|
|
||||||
Err(reason) => panic!("An error occurred when initializing the RNG: {}", reason)
|
|
||||||
};
|
|
||||||
|
|
||||||
Prime::from_rng(511, &mut rngesus);
|
Prime::from_rng(511, &mut rngesus);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[bench]
|
#[bench]
|
||||||
#[ignore]
|
|
||||||
fn bench_generate_512_bit_prime(b: &mut Bencher) {
|
fn bench_generate_512_bit_prime(b: &mut Bencher) {
|
||||||
b.iter(|| Prime::new(512));
|
b.iter(|| Prime::new(512));
|
||||||
}
|
}
|
||||||
|
|
||||||
#[bench]
|
#[bench]
|
||||||
#[ignore]
|
|
||||||
fn bench_generate_1024_bit_prime(b: &mut Bencher) {
|
fn bench_generate_1024_bit_prime(b: &mut Bencher) {
|
||||||
b.iter(|| Prime::new(1024));
|
b.iter(|| Prime::new(1024));
|
||||||
}
|
}
|
||||||
|
|
||||||
#[bench]
|
#[bench]
|
||||||
#[ignore]
|
|
||||||
fn bench_generate_2048_bit_prime(b: &mut Bencher) {
|
fn bench_generate_2048_bit_prime(b: &mut Bencher) {
|
||||||
b.iter(|| Prime::new(2048));
|
b.iter(|| Prime::new(2048));
|
||||||
}
|
}
|
||||||
|
|
262
src/prime.rs
262
src/prime.rs
|
@ -2,69 +2,103 @@ use ramp::{Int, RandomInt};
|
||||||
|
|
||||||
use rand::{OsRng, thread_rng};
|
use rand::{OsRng, thread_rng};
|
||||||
|
|
||||||
use std::fmt;
|
static SMALL_PRIMES: [u32; 999] = [3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
|
||||||
|
61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127,
|
||||||
static SMALL_PRIMES: [u32; 999] = [3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
|
131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191,
|
||||||
67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,
|
193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257,
|
||||||
173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277,
|
263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331,
|
||||||
281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401,
|
337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401,
|
||||||
409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523,
|
409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467,
|
||||||
541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653,
|
479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563,
|
||||||
659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
|
569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631,
|
||||||
809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937,
|
641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709,
|
||||||
941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051,
|
719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
|
||||||
1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171,
|
809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877,
|
||||||
1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289,
|
881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967,
|
||||||
1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427,
|
971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033,
|
||||||
1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523,
|
1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097,
|
||||||
1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621,
|
1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181,
|
||||||
1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753,
|
1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249,
|
||||||
1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879,
|
1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307,
|
||||||
1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011,
|
1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423,
|
||||||
2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131,
|
1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481,
|
||||||
2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269,
|
1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549,
|
||||||
2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381,
|
1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609,
|
||||||
2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521,
|
1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693,
|
||||||
2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659,
|
1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759,
|
||||||
2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749,
|
1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861,
|
||||||
2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879,
|
1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931,
|
||||||
2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019,
|
1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003,
|
||||||
3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169,
|
2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083,
|
||||||
3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307,
|
2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143,
|
||||||
3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433,
|
2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243,
|
||||||
3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547,
|
2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311,
|
||||||
3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673,
|
2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383,
|
||||||
3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803,
|
2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459,
|
||||||
3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929,
|
2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551,
|
||||||
3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073,
|
2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657,
|
||||||
4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217,
|
2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707,
|
||||||
4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339,
|
2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777,
|
||||||
4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483,
|
2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851,
|
||||||
4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637,
|
2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939,
|
||||||
4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759,
|
2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023,
|
||||||
4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919,
|
3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119,
|
||||||
4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021,
|
3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209,
|
||||||
5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171,
|
3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301,
|
||||||
5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323,
|
3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361,
|
||||||
5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449,
|
3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461,
|
||||||
5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581,
|
3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533,
|
||||||
5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717,
|
3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607,
|
||||||
5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851,
|
3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677,
|
||||||
5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011,
|
3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767,
|
||||||
6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143,
|
3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851,
|
||||||
6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277,
|
3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923,
|
||||||
6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389,
|
3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013,
|
||||||
6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569,
|
4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093,
|
||||||
6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703,
|
4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177,
|
||||||
6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841,
|
4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259,
|
||||||
6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977,
|
4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349,
|
||||||
6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127,
|
4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447,
|
||||||
7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283,
|
4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519,
|
||||||
7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459,
|
4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621,
|
||||||
7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573,
|
4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691,
|
||||||
7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699,
|
4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789,
|
||||||
7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867,
|
4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889,
|
||||||
7873, 7877, 7879, 7883, 7901, 7907, 7919];
|
4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967,
|
||||||
|
4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023,
|
||||||
|
5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113,
|
||||||
|
5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227,
|
||||||
|
5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309,
|
||||||
|
5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413,
|
||||||
|
5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479,
|
||||||
|
5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563,
|
||||||
|
5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653,
|
||||||
|
5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737,
|
||||||
|
5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821,
|
||||||
|
5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879,
|
||||||
|
5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007,
|
||||||
|
6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089,
|
||||||
|
6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173,
|
||||||
|
6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263,
|
||||||
|
6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329,
|
||||||
|
6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397,
|
||||||
|
6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529,
|
||||||
|
6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607,
|
||||||
|
6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701,
|
||||||
|
6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791,
|
||||||
|
6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869,
|
||||||
|
6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961,
|
||||||
|
6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027,
|
||||||
|
7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129,
|
||||||
|
7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229,
|
||||||
|
7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331,
|
||||||
|
7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457,
|
||||||
|
7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529,
|
||||||
|
7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589,
|
||||||
|
7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681,
|
||||||
|
7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757,
|
||||||
|
7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873,
|
||||||
|
7877, 7879, 7883, 7901, 7907, 7919];
|
||||||
|
|
||||||
/// An arbitrarily-length prime number, suitable for cryptographic purposes.
|
/// An arbitrarily-length prime number, suitable for cryptographic purposes.
|
||||||
///
|
///
|
||||||
|
@ -95,12 +129,15 @@ static SMALL_PRIMES: [u32; 999] = [3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
|
||||||
/// as well. `Prime`s simply claim that the number you're dealing with is a
|
/// as well. `Prime`s simply claim that the number you're dealing with is a
|
||||||
/// prime number.
|
/// prime number.
|
||||||
custom_derive! {
|
custom_derive! {
|
||||||
#[derive(Debug,
|
/// A cryptographically secure prime number.
|
||||||
NewtypeAdd, NewtypeAdd(Int),
|
#[derive(NewtypeDebug, NewtypeDisplay, NewtypeBinary, NewtypeOctal,
|
||||||
NewtypeSub, NewtypeSub(Int),
|
NewtypeLowerHex, NewtypeUpperHex, NewtypeAdd, NewtypeAdd(Int),
|
||||||
NewtypeMul, NewtypeMul(Int),
|
NewtypeSub, NewtypeSub(Int), NewtypeMul, NewtypeMul(Int), NewtypeDiv,
|
||||||
NewtypeDiv, NewtypeDiv(Int))]
|
NewtypeDiv(Int), NewtypeRem, NewtypeRem(Int), NewtypeBitAnd,
|
||||||
pub struct Prime(Int);
|
NewtypeBitAnd(Int), NewtypeBitOr, NewtypeBitOr(Int), NewtypeBitXor,
|
||||||
|
NewtypeBitXor(Int)
|
||||||
|
)]
|
||||||
|
pub struct Prime(Int);
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Prime {
|
impl Prime {
|
||||||
|
@ -114,9 +151,9 @@ impl Prime {
|
||||||
debug_assert!(bit_length >= 512);
|
debug_assert!(bit_length >= 512);
|
||||||
let mut rngesus = match OsRng::new() {
|
let mut rngesus = match OsRng::new() {
|
||||||
Ok(rng) => rng,
|
Ok(rng) => rng,
|
||||||
Err(reason) => panic!("Error initializing RNG: {}", reason)
|
Err(reason) => panic!("Error initializing RNG: {}", reason),
|
||||||
};
|
};
|
||||||
|
|
||||||
Prime::from_rng(bit_length, &mut rngesus)
|
Prime::from_rng(bit_length, &mut rngesus)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -126,7 +163,7 @@ impl Prime {
|
||||||
pub fn from_rng(bit_length: usize, rngesus: &mut OsRng) -> Prime {
|
pub fn from_rng(bit_length: usize, rngesus: &mut OsRng) -> Prime {
|
||||||
debug_assert!(bit_length >= 512);
|
debug_assert!(bit_length >= 512);
|
||||||
let mut candidate: Int;
|
let mut candidate: Int;
|
||||||
|
|
||||||
// In order to remove as much bias from the system as possible, test
|
// In order to remove as much bias from the system as possible, test
|
||||||
// 500 potential candidates at a time before re-seeding the candidate
|
// 500 potential candidates at a time before re-seeding the candidate
|
||||||
// with a new random number.
|
// with a new random number.
|
||||||
|
@ -166,11 +203,33 @@ impl Prime {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl fmt::Display for Prime {
|
fn mod_exp(base: &Int, exponent: &Int, modulus: &Int) -> Int {
|
||||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
let mut result = Int::one();
|
||||||
let &Prime(ref num) = self;
|
let mut base = base.clone();
|
||||||
write!(f, "{}", num)
|
let mut exponent = exponent.clone();
|
||||||
|
|
||||||
|
while exponent > 0_usize {
|
||||||
|
if &exponent & 1_usize == 1_usize {
|
||||||
|
result = (&base * result) % modulus;
|
||||||
|
}
|
||||||
|
|
||||||
|
base = (&base.pow(2)) % modulus;
|
||||||
|
exponent = &exponent >> 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
result
|
||||||
|
}
|
||||||
|
|
||||||
|
fn rewrite(candidate: &Int) -> (Int, Int) {
|
||||||
|
let mut d = candidate - 1_usize;
|
||||||
|
let mut s = Int::zero();
|
||||||
|
|
||||||
|
while &d & 1 == 1_usize {
|
||||||
|
d = &d >> 1_usize;
|
||||||
|
s = &s + 1_usize;
|
||||||
|
}
|
||||||
|
|
||||||
|
(s, d)
|
||||||
}
|
}
|
||||||
|
|
||||||
fn is_prime(candidate: &Int) -> bool {
|
fn is_prime(candidate: &Int) -> bool {
|
||||||
|
@ -209,11 +268,7 @@ fn fermat(candidate: &Int) -> bool {
|
||||||
|
|
||||||
let result = mod_exp(&random, &(candidate - 1_usize), candidate);
|
let result = mod_exp(&random, &(candidate - 1_usize), candidate);
|
||||||
|
|
||||||
if result == 1_usize {
|
result == 1_usize
|
||||||
true
|
|
||||||
} else {
|
|
||||||
false
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
fn miller_rabin(candidate: &Int) -> bool {
|
fn miller_rabin(candidate: &Int) -> bool {
|
||||||
|
@ -227,7 +282,7 @@ fn miller_rabin(candidate: &Int) -> bool {
|
||||||
if x == 1_usize || x == (candidate - 1_usize) {
|
if x == 1_usize || x == (candidate - 1_usize) {
|
||||||
continue;
|
continue;
|
||||||
} else {
|
} else {
|
||||||
for _ in Int::one() .. s - 1_usize {
|
for _ in Int::one()..s - 1_usize {
|
||||||
x = mod_exp(&x, &Int::from(2), candidate);
|
x = mod_exp(&x, &Int::from(2), candidate);
|
||||||
if x == 1_usize {
|
if x == 1_usize {
|
||||||
return false;
|
return false;
|
||||||
|
@ -242,31 +297,30 @@ fn miller_rabin(candidate: &Int) -> bool {
|
||||||
true
|
true
|
||||||
}
|
}
|
||||||
|
|
||||||
fn mod_exp(base: &Int, exponent: &Int, modulus: &Int) -> Int {
|
#[cfg(test)]
|
||||||
let mut result = Int::one();
|
mod tests {
|
||||||
let mut base = base.clone();
|
use ramp::Int;
|
||||||
let mut exponent = exponent.clone();
|
use super::{fermat, miller_rabin};
|
||||||
|
|
||||||
while exponent > 0_usize {
|
#[test]
|
||||||
if &exponent & 1_usize == 1_usize {
|
fn test_fermat_pass() {
|
||||||
result = (&base * result) % modulus;
|
assert!(fermat(&Int::from(7919)));
|
||||||
}
|
|
||||||
|
|
||||||
base = (&base.pow(2)) % modulus;
|
|
||||||
exponent = &exponent >> 1;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
result
|
#[test]
|
||||||
}
|
#[should_panic]
|
||||||
|
fn test_fermat_fail() {
|
||||||
fn rewrite(candidate: &Int) -> (Int, Int) {
|
assert!(fermat(&Int::from(7920)));
|
||||||
let mut d = candidate - 1_usize;
|
|
||||||
let mut s = Int::zero();
|
|
||||||
|
|
||||||
while &d & 1 == 1_usize {
|
|
||||||
d = &d >> 1_usize;
|
|
||||||
s = &s + 1_usize;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
(s, d)
|
#[test]
|
||||||
|
fn test_miller_rabin_pass() {
|
||||||
|
assert!(miller_rabin(&Int::from(7919)));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
#[should_panic]
|
||||||
|
fn test_miller_rabin_fail() {
|
||||||
|
assert!(miller_rabin(&Int::from(7920)));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
Add table
Reference in a new issue